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Outline

Neutron induced charged particle measurements with LENZ at LANSCE

Study of 5°Ni(n,p)°°Co and %°Ni(n,a)%¢Fe with a %°Ni target
— Comparison to a surrogate ratio measurement
— 9Ni is a significant background component to our measurement of %6Ni(n,p)

Study of %6Ni(n,p)°6Co and %6Co(n,p)°°Fe with a radioactive Ni/Co cocktail target

Development of a solenoid spectrometer for improved measurements with
radioactive targets.

Summary/outlook
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Nuclear data needs for neutron-induced charged-particle
reaCtiOnS (n,Z) - 56Ni(n,p)56cw;1 ‘}o

+ Damage due to hydrogen and helium production in structural materials like Fe, Cr, Ni,
etc.
- Manuscript on 5Fe(n,z)/%¢Fe(n,z) to be submitted for publication.
- Measurements of 58Ni(n,z)/%°Ni(n,z) with LENZ are under analysis (D. Votaw)
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Precision measurements of key reactions like 6Li(n,t)*He, '°B(n,a)’Li, ?C(n,a)°Be,
60Q(n,a)'3C, etc.

- Kuvin et al. Phys. Rev. C, 104, 014603 (2021)

- Manuscript on '®0O(n,a)'3C to be submitted for publication.

Ni(n,p)*°Co *1 2 10
/ 210

Informing the design of next-gen reactions (e.g. fast spectrum molten salt reactors)
where reactions like 33Cl(n,p)°S can play a significant role as a neutron poison and
produces 3°S(T4,, ~ 75 days) that can complicate the path to certification for designs that  °

relative to standard
S
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- Study of 35CI(n,p)35: S Kuvin et al. Phys. Rev. C, 102, 024623 (2020) = 107 f_ o i g E
Constraining the vp-process for nuclear astrophysics by studying (n,p) reactions on ‘; 10° r adt | %ﬁﬁé 1
proton-rich unstable nuclei (radioactive targets). e.g. ®Ni(n,p)°¢Co (°*Ni T4, ~6 days) Z 10°F N R
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Radiochemistry diagnostics for quantifying performance of nuclear fuel burning. st A TR i b

50 60 70 80 90 100 110 120
mass number

LENZ: Low Energy (n,z) c_ollaboratlon/experl_menta_ll setup developed to pin As the most abundant seed nucleus for
down these types of reactions that are ubiquitous in nature. the vp-process, any small change in the

%6Ni(n,p)®¢Co rate results in a significant
impact on final abundances of
heavier isotopes (Wanajo et al)
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LENZ: The Low Energy (n,z) experimental station

» Detect outgoing charged
particles using double-sided
silicon strip detectors in a
compact setup close to the
target sample.
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LENZ: The Low Energy (n,z) experimental station

» Detect outgoing charged
particles using double-sided
silicon strip detectors in a
compact setup close to the

target sample.
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Schematic diagram of the LENZ instrument,
composed of two sets of dEE DSSD detector
telescopes at forward angles, and a target wheel in
the middle of the instrument. Red arrow shows the
neutron beam direction.
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WNR Facility at LANSCE: fast neutrons with a broad ?:;;E':‘Iig oy
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hotLENZ at WNR and target fabrication at IPF
y

« Goal: Leverage a world unique capability that exists at
LANSCE for target production at the Isotope Production
Facility, purification and fabricated at the Isotope
Program Hot Cell Facility, and then studied using the
fast neutron beams available at the WNR facility.

- See talk by B. DiGiovine for more details on the e .
infrastructure improvements and engineering behind o
hotLENZ and the talk by V. Mocko for more details on the ‘W |
IPF Hot Cell Facility and the chemical separation
and target fabrication efforts.

« The efforts that they will describe made this work, and
other recent radioactive target experiments at LANSCE,

possible.
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Production of %°Ni at IPF via °°Co(p,x)

« The production of %Ni via %°Co(p,xn) reactions, also results
in the production of 5Ni, %8Ni, and %°Ni that will all be
present in the final radioactive cocktail target, without
performing further mass separation. Since %®Ni and %’Ni will
decay swiftly with day-long half-lives, whereas %8Ni (stable)
and %Ni (long lived) will not, the charged particle

backgrounds due to ®8Ni(n,z) and %°Ni(n,z) will be dominant.

» Measurements of the stable nickel isotopes are captured in
many past measurements. However, the lack of past
experimental data on %°Ni(n,z) at fast neutron energies
above 100 keV, presents a technical consideration for the
study of ®®Ni(n,p) that needs to be characterized.
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9Ni(n,p)°°Co and *°Ni(n, a)°¢Fe

5Ni is a long-lived (T4, ~ 100,000 years) unstable
isotope of nickel that is bookended between the

®

stable A=58 and A=60 isotopes.

Can build up to a non-negligible portion of the total
nickel content in reactors from neutron capture on
58Ni at thermal energies and from %°Ni(n,2n) at fast

neutron energies in fusion reactors.

No prior experimental data on %°Ni(n,p) or ®*Ni(n,a) at
fast neutron energies above 20 keV, except for (n,xp)
cross sections derived through a surrogate ratio

method (SRM) above 10 MeV.

Measured with LENZ during the 2019 (~1 ug of %°Ni)
and 2020 (~100 ug %°Ni, 95% enriched) run-cycles.

JEFF-3.3 includes the most recent evaluation of °°Ni

from thermal to fast neutron energies.

New data allows for a sensitive test of calculations
that use global input parameters and/or to benchmark

indirect methods like SRM.
Los Alamos
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New data on 3°Ni(n,p) and *°Ni(n,a) at fast neutron energies

Statistical Hauser-Feschbach
calculations performed using the
code CoH3.

For (n,p) below 3 MeV, the
experimental cross section is
approximately 30% lower than the

available evaluations and from the

calculations when using default
parameters. Details on the
adjustments to the OMP/level
density are described in a
publication that is currently under
review:

Cross section (mb)

Cross section (mb)

Direct measurement of **Ni(n,p)**Co and *Ni(n,a)*Fe at fast neutron energies from

500 keV to 10 MeV

S. A. Kuvin,* H. Y. Lee, B. DiGiovine, C. Eiroa-Lledo, A. Georgiadou, M. Herman, T.
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Study of *°Ni(n,p) and >°Ni(n,a)

-~ ®Ni(n,xp) JEFF-3.3 1o bounds

L I
1000 [~ — *Ni(nxp) CoH3 with £ 16% LD adjustments 1 7
« Going from the upper to lower bounds of the 1¢ band | e 1
from JEFF-3.3 represents a range of nearly a factor of 5 £ "™ 0
and is inconsistent with the cross sections derived from ‘it .

the surrogate work.
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« Our direct measurement is in fairly good agreement with S
the central value of JEFF-3.3 above E,, = 3 MeV but
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requires a slight adjustment below 3 MeV. nident Neron Energy (e
O L L L e B
* Raises questions about the reliability of that particular ]
application Of the SRM. ; - ®Ni(n,xa) JEFF-3.3 o bounds :
250— — *Ni(n,xc) CoH3 with = 15% LD adjustments =
« Direct measurements on radioactive isotopes should be & | ~meomew ]
made, when feasible.
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First direct measurement of neutron induced reactions
on *¢Ni (and °¢Co)
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First direct measurement of neutron induced reactions
on *¢Ni (and °¢Co)
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First direct measurement of neutron induced reactions
on *¢Ni (and °¢Co)

. . 20007“‘H‘“HHHHHHHHHHHHH\HL 109
* First experimental data on *®Co(n,p) se0 Preliminary 1 1
in comparison with statistical 1600/ “Somp 4525 |
calculations. gmoo? —+ LENZ data (this work) é <
—=1200— -1 £
. . . S k CoH3 calculation + 30% 1o
* Preliminary cross sections for G100 1%
56Ni(n,p) have been obtained and £ e
will provide the first experimental ¢ celcsaton (s word)
400 o hsg"
constraints on the role of *®Ni(n,p) ,.; ] W “E’;z“f‘vz'z““‘”
. : e ork in progress
in the vp-process. Stay tuned! AN PN PP PAY VST PP s yvorkin progress

Incident Neutron Energy (MeV) 107 1
Temperature (GK)

* Total uncertainties are ~30%

In the process of finalizing the results and the implications of the data for nuclear
astrophysics where reaction rates are typically varied by x10-x100 when no experimental

data exists
1% Los Alamos
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Solenoid approach for improved measurements with
radioactive targets

Solenoid approach
Blue line: LANSCE neutron beam

Yellow sphere: intrinsic beta decays

Gray sphere: intrinsic gamma decays
Red envelop: solid angle coverage for
reaction charged particles

Conventional measurement
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| Bore diameter = 90 cm
: Bore length = 1.4 meters
Magnetic Field = 5 Tesla

- Reduced radiation damage to
detectors for improved experimental
resolutions

* Improved solid angle coverage for charged particles of interest

« Different charged patrticles are identified by cyclotron period

* Provide high quality nuclear data for reactions with radioactive samples

LOS AIAQIMOS
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Summary/Outlook

« Study of %*Ni(n,p) via a direct measurement with a radioactive nickel target demonstrated the
importance of making direct measurements, when feasible (manuscript under review with PRC).

» Preliminary cross sections for reactions on radioactive %®Ni (T,,, ~ 6 days) and %6Co (T,,, ~ 77 days)
have been obtained and we are currently working to finalize the details of the analysis.

« Additional measurements on the stable isotopes 58Ni and €°Ni (analysis led by D. Votaw) with LENZ
will help provide a more complete evaluation of the nickel isotopes when combined with the
radioisotope data.

* In anticipation of some of the nuclear data needs for (n,z) reactions on unstable nuclei, we have
begun planning the development of a solenoidal spectrometer for (n,z) studies at LANSCE that will
have significantly improved sensitivity over a more “traditional approach” to charged particle detection.

1% Los Alamos
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Backup
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Improved evaluations of (n,p) and (n,a)

* Include missing particle production
spectrum, discrete states, angular
information. ENDF/B-VIII.O total
cross-sections unmodified (and partial
cross-sections when available)

» Modified evaluations for (n,p) and
(n,a) were performed for 62 different
isotopes by Hyeong-il Kim of KAERI
and incorporated into the MCNP
simulation.

H. I. Kim et al., Nucl. Instrum. Methods Phys.

Res. A 964,163699 (2020).
https://doi.org/10.1016/j.nima.2020.163699

AAAAAAAAAAAAAAAAAA

Neutron TOF (ns)

Neutron TOF (ns)

1000

900 -

800 -

700 -

600

500

400 -

300 -

200

1000

900 -
800 -
700 -
600 -
500 |
400 -
300 -

200 +— 58
00 25 50 7.5 10.0 12

(@) “\ INF S i)
‘ . MCNP
ENDF/B-VIII.O

a)%"‘?**"x : \,\‘\

0.0 25 50 75 100 125 150 175 20.0

Emitted charged particle energy (MeV)

17 5 20.0
Emitted charged particle energy (MeV)



Improved evaluations of (n,p) and (n,a)

1000

* Include missing particle production [ &t - e |
spectrum, discrete states, angular GEANT4 simulation was also benchmarked

infarmation ENDE/RVII 0O tatal 2 against MCNP and LENZ data. Development
Data libraries also generated for reactions on 56Ni, ¢ has been led by P. Tsintari (CMU). A
57Ni, 56Co, 57Co, etc for which no previous ENDF/B- ; manuscript is expected to be submitted
VII1.0 evaluation existed 30'200” 0 NIM e
+ Modified evaluations for (n,p) and o S g |
(n,a) were performed for 62 different Emitted charged particle eneray (MeV)
isotopes by Hyeong-il Kim of KAERI 1000 ——
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Surrogate ratio measurement of *°Ni(n,xp)

®

Cross-section (barn)
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Prior to this work, the only available
>Ni(n,xp) cross section information at
fast neutron energies was derived
from a surrogate ratio method.

The scale and trend of their data was
inconsistent with statistical
calculations using default parameters
and with ENDF, JEFF, and JENDL for
which they conclude that new
evaluations are necessary.

Modifications to the optical potentials
used in the statistical calculations are
proposed to reproduce the scale of
their experimental data.

From Pandey et al. https://doi.org/10.1103/PhysRevC.99.014611



Comparison between 3°Ni(n,p)°*°Co and >°Co(p,n)*°Ni

The prescribed adjustment (scaling
the volume radius term by 1.25) to
the default optical model
parameters in TALYS by Pandey et
al. also performs worse compared
to the default parameters when
reproducing the >°Co(p,n) data. It
results in a factor 4-5 difference
between our direct measurement
data and the calculation for
>INi(n,p,) at ~2 MeV.

In contrast, we obtain better
agreement better agreement
between the (p,n) data and our
experimental (n,p) data with the
more modest adjustments to the
proton OMP.

~
1@ Los Alamos
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For (n,py) (right), the magenta curve is from the CoH calculation using the
same optical model parameters as the red curve for >°Co(p,n) case (left).
The black data points (right) are derived from the >°Co(p,n) data from exfor
by using the statistical model calculation to get the expected ratio of (p,n,)
to (p,n) and then using detailed balance theorem to go from (p,n,) to (n,p,)



